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Abstract 

 

Language production has been found to be lateralized in the left hemisphere (LH) for 

95% of right-handed people and about 75% of left-handers. The prevalence of atypical 

right hemispheric (RH) or bilateral lateralization for reading and colateralization of 

production with word reading laterality has never been tested in a large sample. In this 

study, we scanned fifty-seven left-handers who had previously been identified as being 

clearly left (N = 30), bilateral (N = 7) or clearly right (N = 20) dominant for speech on 

the basis of fMRI activity in the inferior frontal gyrus (pars opercularis/pars 

triangularis) during a silent word generation task. They were asked to perform a lexical 

decision task, in which words were contrasted against checkerboards, to test the 

lateralization of reading in the ventral occipitotemporal region. Lateralization indices 

for both tasks correlated significantly (r = 0.59). The majority of subjects showed most 

activity during lexical decision in the hemisphere that was identified as their word 

production dominant hemisphere. However, more than half of the sample (N = 31) had 

bilateral activity for the lexical decision task without a clear dominant role for either the 

LH or RH, and three showed a crossed frontotemporal lateralization pattern. These 

findings have consequences for neurobiological models relating phonological and 

orthographic processes, and for lateralization measurements for clinical purposes.  

 

Keywords: Broca's area, Cerebral lateralization, fMRI, Reading, Speech, vOT (ventral 

occipito-temporal) activity, VWFA (Visual Word Form Area) 
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Language processing is considered as one of the most lateralized cerebral functions in 

humans. At the anatomical level, the hemispheric asymmetry has been attributed to a 

larger size of the left planum temporale (a posterior region of the Sylvian fissure), and 

to different slopes of the Sylvian fissures in the two hemispheres (Geschwind & 

Levitsky, 1968; Josse, Mazoyer, Crivello & Tzourio-Mazoyer, 2003). At a functional 

level, a left hemispheric specialization was reported for a variety of language-related 

regions, among which the  inferior frontal gyrus (IFG) crucial for speech production and 

more posterior brain regions such as the ventral occipitotemporal (vOT) region involved 

in reading.  

 

Despite the well-established role of IFG for speech production and the vOT for 

reading, it is still not clear how these frontal and occipitotemporal regions interact with 

each other. If they are closely interrelated, one would expect the anterior and posterior 

regions to lateralize to the same hemisphere in order to decrease the time costs of 

information exchange1. Psychological models of visual word recognition nearly all 

incorporate a contribution of phonological information to visual word recognition based 

on a large variety of behavioral evidence (e.g., Dimitropoulou, Duñabeitia & Carreiras, 

2011; Ferrand & Grainger, 1992; Rastle & Brysbaert, 2006), but fast interactions 

between IFG and vOT are not yet widely integrated in neurological models of reading 

(e.g., Cohen et al., 2000; Dehaene et al., 2004; Dehaene, Cohen, Sigman & Vinckier, 

2005). Dehaene and colleagues believe that the vOT is specifically specialized for the 

binding of letters into words. They called it the visual word form area (VWFA; Cohen 

et al., 2000) as it responded to orthographic letter strings, invariantly of retinal location, 

case, font or horizontal/vertical format (see also Cai, Paulignan, Brysbaert, Ibarrola & 

Nazir, 2010; Dehaene et al., 2004; McCandliss, Cohen & Dehaene, 2003). Others 

believe that the vOT is not dedicated to visual word form processing because it also 

responds to picture naming, repeating auditory words etc. (e.g., Devlin, Jamison, 

Gonnerman & Matthews, 2006; Duncan, Pattamadilok & Devlin, 2010; Price & Devlin, 

2003, 2011; Twomey, Duncan, Price & Devlin, 2011). The latter view considers the 

                                                 
1 Note that the direction of laterality within an activated region can be influenced by both excitatory and 
inhibitory connections from the LH/RH homologue areas. For example, Seghier, Josse, Leff and Price 
(2011) and Seghier, Kherif, Josse and Price (2011) found lateralities to vary according to the amount of 
right hemispheric activity in a word matching task. This could also indirectly influence the 
colateralization patterns between two or more regions. 
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vOT as an interface in the reading process: The neurons in vOT that are sensitive to 

visual bigrams (and to whole words more anteriorally) are in constant interaction with 

neurons coding for the nonvisual characteristics of the stimuli such as their phonology 

or meaning. Such fast interactions would predict that the vOT is lateralized to the same 

side as the IFG, assuming that the cross-talk between these areas would be slowed down 

if their activity were dominantly situated in different hemispheres. 

 

Indeed, studies reported left hemispheric lateralizations in language-related tasks 

for both IFG and vOT (e.g., Xue et al., 2005; Seghier, Kherif, et al., 2011). Seghier, 

Kherif, et al. (2011) for example, compared the degree of lateralization during a 

semantic vs. perceptual word matching task in 50 brain regions. Their voxel-based 

laterality maps showed consistent LH lateralization in frontal regions and the vOT at 

group level.  

However, a number of studies have reported individual cases of crossed frontal 

and temporal language dominance (e.g., Baciu et al., 2003; Jansen et al., 2006; Kamada 

et al., 2006; Lee et al., 2008), with for example speech being controlled by the left 

hemisphere (LH) and reading by the right hemisphere (RH). Similarly, in a large-scale 

fMRI study Pinel and Dehaene (2010) argued against an overall dominance view of 

brain regions because very few regions related to sentence processing (situated in the 

posterior superior temporal sulcus and the middle frontal gyrus) colateralized with brain 

areas involved in mental arithmetic (in particular a horizontal segment of the 

intraparietal sulcus and the superior parietal lobule). Even the correlations between the 

laterality indices (LIs) in vOT and frontal areas (inferior, pre-central, mid-frontal) in 

sentence processing often were not significant (Pinel & Dehaene: Table 1), making the 

authors conclude that “… although all of these regions are highly asymmetrically 

activated, always in favor of the left hemisphere, correlations between the LI of the 

fusiform gyrus and of frontal areas are weak.” (Pinel & Dehaene, 2010, p.53). Pinel and 

Dehaene claimed that the brain should be seen as a mosaic of independently lateralized 

regions, although one has to keep in mind that their findings point to an absence of a 

correlation in the degree of lateralization in right-handed LH-dominant participants 

rather than colateralization across hemispheres itself. 
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So far, only two small-scale studies directly investigated the colateralization of 

the IFG during speech (measured as activity in the so-called Broca's area, i.e. pars 

opercularis (Brodmann Area [BA] 44) and the pars triangularis (BA 45)) and vOT 

during reading at an individual level. Cai, Lavidor, Brysbaert, Paulignan and Nazir 

(2008) assessed the lateralization of speech by comparing event-related potentials 

(ERPs) in the left and right IFG during a verb generation task. The lateralization of 

word reading was tested in a lexical decision task (LDT). Eight right-handed subjects 

showing a typical frontal lateralization for speech in the left hemisphere (LH) also 

showed the strongest negative mean ERP in the LH for the visual word form area during 

word reading in the LDT. Four RH speech dominant participants consistently showed 

stronger reading ERPs in the RH compared to the LH. Cai et al. (2008) attributed the 

perfect colateralization of the frontal and occipito-temporal language areas to the need 

for fast interactions between these regions during word reading. In a second study run 

by Cai et al. (2010), 11 participants were identified as LH lateralized in the word 

generation task and five participants were atypically RH lateralized. The LIs of the vOT 

during reading in a LDT again correlated significantly with the LIs calculated from the 

IFG (r = 0.59), but one right-handed person with LH dominance in IFG and one left-

handed participant with RH dominance in IFG showed crossed laterality. Cai et al. 

(2010) pointed to the possibility that weak activity during the word reading task could 

have caused the exceptions. In particular, the pattern of the right-handed participant was 

not clear, as she showed the expected LH dominance of vOT when the words were 

presented vertically (when there was more activity in vOT). 

 

All in all, the evidence about the colateralization of frontal and occipito-

temporal language processing brain areas is far from clear. As we have argued a number 

of times (Ellis & Brysbaert, 2010a, 2010b; Hunter & Brysbaert, 2008; Van der Haegen, 

Cai, Seurinck & Brysbaert, 2011), the best way to examine laterality patterns is to 

compare a group of participants with typical LH language dominance (found in about 

95% of right-handers and 75% of left-handers; Knecht et al., 2000) with a group of 

participants with atypical RH or bilateral language dominance. Cai et al. (2008, 2010) 

followed this approach, but only tested small samples of four and five participants with 

atypical dominance so that only coarse conclusions about the variability of 
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frontotemporal laterality patterns could be drawn. Other studies did report large-scale 

results, but their correlations between LIs were based on a homogeneous sample of 

participants with typical language dominance, mostly right-handers (e.g., Pinel & 

Dehaene, 2010). Still other studies did not analyze lateralization data at the individual 

level, but only reported colateralizations at group level (e.g., Seghier, Kherif, et al., 

2011). It is important however to investigate the degree of inter-subject variability in 

language lateralization across different functions both for theoretical and clinical 

purposes. As for the latter, large variability would indicate that an overall lateralization 

index of language is misleading for preoperative assessments when surgeons want to 

minimize the damage in the dominant hemisphere (Seghier, Kherif et al., 2011). Rather, 

separate LIs for different language functions should be obtained. 

 

In the present study, we explored the relationship between the occipitotemporal 

word reading region vOT and the frontal phonology-related speech region IFG in a 

sample of 57 participants who reported to write and draw with their left hand. If these 

regions are lateralized independently for most of the participants, we should see many 

cases of crossed laterality. On the other hand, if the lateralization of vOT is influenced 

by the laterality of the speech areas, we would expect that if the asymmetry of IFG 

changes, the lateralization of vOT will shift as well for the majority of participants. 

 

We could test a large number of participants with atypical brain dominance in 

IFG because we first screened 265 left-handed participants with a behavioral picture and 

word visual half field task (see Method section). Participants showing an indication of 

atypical speech laterality in these tasks were invited for a fMRI study that contained a 

silent word generation task and the currently discussed LDT. In addition, participants 

that presumably had LH speech dominance were selected as control participants. 
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Method 

 

Participants 

 

In a previous study (Van der Haegen et al., 2011), 50 participants were selected 

from a large group of 250 left-handers to take part in a fMRI silent word generation 

task. The selection was based on their performance in a behavioral picture and word 

visual half field task. Pictures or words were shown in the parafovea. Stimuli were 

presented in bilateral pairs to avoid attentional biases. The target that had to be named 

was indicated by an arrow in the middle of the screen. Hunter and Brysbaert (2008) 

demonstrated that these tasks can serve as a screening method to find people with 

atypical speech dominance. The partial crossing of optic fibers makes stimuli presented 

in LVF/RVF initially fall into the RH/LH respectively, so that shorter naming latencies 

for stimuli in LVF can point to a RH dominance for speech (see also Barca et al., 2011). 

In Van der Haegen et al. (2011), we invited participants who were faster in naming 

pictures and/or words in LVF than in RVF to the fMRI study with a silent word 

generation task as they were potential atypical subjects. A control group of left-handed 

participants with RVF advantages were also scanned to compare the data of the atypical 

participants with those who had typical LH dominance.  

 

For the present study, 7 extra participants were scanned bringing the total sample 

to 57 left-handers (41 females, 16 males; age ranging between 18 and 29 years with 

mean age = 20.8 years). All were students of Belgian universities or higher education 

schools with Dutch as their native language and with normal or corrected-to-normal 

vision. Table 1 shows their mean handedness scores obtained via a Dutch translation of 

the Edinburgh Inventory Questionnaire (Oldfield, 1971). The scale ranged from –3 

(extreme left preference) to +3 (extreme right preference). All participants reported to 

write and draw with their left hand. Three out of 57 participants had a positive 

handedness value, because they did not use their left hand for the eight actions other 

than writing and drawing in the handedness questionnaire (e.g. using scissors). We did 

not consider them as an exclusion criterium to increase variability of the sample and 

thus increase the chances of finding a broad range of LI scores. Participants fulfilled the 
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conditions to be scanned and signed an informed consent form according to the 

guidelines of the Ethics Committee of the Ghent University Hospital. 

 

Tasks and Stimuli 

 

Word generation task 

 

The lateralization of speech was measured by activity in the inferior frontal 

region (Broca's area: pars opercularis + pars triangularis) during a silent word 

generation task. The same task was previously used by Cai et al. (2010) among others 

(Abbott, Waites, Lillywhite & Jackson, 2010; Badzakova-Trajkov, Häberling, Roberts 

& Corballis, 2010; Hunter & Brysbaert, 2008; Knecht et al., 1996). Participants were 

asked to silently generate as many words as possible starting with a letter presented in 

the middle of the screen ( b, d, k, l, m, n, p, r, s or t) during ten blocks of 15s. Ten other 

blocks of 15s contained the control task: The letter string baba appeared on the screen 

and participants were asked to silently repeat this nonword as long as it was presented. 

Finally, activation and control blocks were alternated with rest blocks of 15s indicated 

by a horizontal line on the screen, in which participants were asked to relax. A practice 

phase outside the scanner ensured that everyone understood the task correctly.  

 

Lexical Decision Task 

 

The LDT task aimed to assess the lateralization of word reading by looking at 

activity in the vOT. Stimuli consisted of 24 high frequent words (mean log10 

Frequency/million = 2.16, range 1.89-2.44), 24 low frequent words (mean log10 

Frequency/million = 0.61, range 0-1), 24 consonant strings and 24 scrambled words. 

Words were 4-7 letters long, with six words of each word length. The length of the 

consonant strings was equal to the word lengths. Scrambled words were created by 

scrambling images of word stimuli at the pixel level; they matched the words in 

length/size. Stimuli were displayed in Courier New, in black on a white background.  
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An event-related design was used for this task. Each trial began with a centrally 

presented fixation cross. After a variable duration of 500-2000 ms, a stimulus was 

displayed for 800 ms followed by a short horizontal line for 2s until the end of the trial. 

Participants were required to press the yes button with the left index finger if the 

stimulus was a word and to press the no button with the right index finger if the 

stimulus was no existing word. They were told to perform the task as fast as possible 

from the moment the stimulus appeared. All stimuli were displayed once in random 

order. 

 

Stimulus presentation and fMRI Data Acquisition 

 

Stimuli were presented using Presentation software (NeuroBehavioral Systems, 

CA, United States) and projected onto a translucent screen. Participants watched the 

screen via a mirror installed in front of their eyes in the scanner. 

Whole-brain images were acquired using a 3-Tesla Siemens Trio MRI scanner 

(Siemens Medical Systems, Erlangen, Germany) at the Ghent University Hospital with 

an 8-channel radiofrequency head coil.  

Functional images were obtained using a T2*-weighted gradient-echo EPI 

sequence [TR = 2630, TE = 35 ms, image matrix = 64 * 64, FOV = 224 mm, flip angle 

= 80°, slice thickness = 3.0 cm, distance factor = 17%, voxel size = 3.5 * 3.5 * 3 mm3]. 

These settings gave 40 axial slices parallel to the anterior-posterior commissure. A high-

resolution anatomical image was obtained using a T1-weighted 3D MPRAGE sequence 

[TR = 1550 ms, TE = 2.39 ms, image matrix = 256 * 256, FOV = 220 mm, flip angle = 

9°, voxel size = 0.9 × 0.9 × 0.9 mm3]. 

 

fMRI Data Analysis 

 

FMRI data analysis was performed with SPM5 (Wellcome Trust Centre for 

Neuroimaging, London, UK). The first four images were discarded in each session in 

order to obtain a magnetization equilibrium. Functional images were preprocessed by 

(1) a correction for slice time delays caused by the interleaved acquisition of images; (2) 

spatial realignment using rigid body transformation to correct for head movements; (3) 
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coregistration of individual anatomical images to a mean functional image; (4) 

normalization to the Montreal Neurological Institute (MNI) T1 template; and (5) spatial 

smoothing with a 3 mm full width at half maximum (FWHM) Gaussian Kernel to 

optimize the images for individual analyses. The pre-processed data from each partipant 

were then entered into first-level statistical analysis. For the word generation task, 

experimental conditions  were modeled using a canonical hemodynamic response 

function (HRF; Friston, Jezzard & Turner, 1994) convolved with a boxcar function in a 

General Linear Model (GLM). Error trials and six estimated head movement parameters 

were added into the models as regressors-of-no-interests.  

Individual contrast images in the word generation task were obtained by 

contrasting the word generation condition (target letter display) with the control 

condition (baba repetition).  For the LDT task, modeling consisted of convolving the 

onset time series of the different stimulus types with canonical HRF with time 

derivatives. The contrast of interest was the horizontal word condition against the 

scrambled word condition. 

 

Individual LIs for production in the word generation task were calculated for the 

region formed by the pars opercularis (approximately BA44) and pars triangularis 

(approximately BA45) in the AAL template (Tzourio-Mazoyer et al., 2002). For the 

LDT, we adopted the predefined vOT mask used in Twomey et al. (2011). This box 

ranged from X = -30 to -54, Y = -45 to -70 and Z = -30 to -4 and a mirror-reversed box 

in RH, excluding cerebellar regions. We further restricted this mask to the fusiform and 

inferior temporal gyri.  Participants showing no activation at an uncorrected p < 0.01 

level in this mask were excluded because their vOT activity would be too weak to 

calculate reliable LIs. 

 

LI values were computed with the LI Toolbox 1.02 of Wilke and Lidzba (2007). 

We decided to use this toolbox as it has been shown that traditional LI calculations 

based on a normalized difference of number of activated voxels in LH and RH surviving 

an arbitrarily chosen threshold produce fluctuating estimations (e.g., Abbott et al., 2010; 

see Seghier, 2008 for a review). In contrast, the LI toolbox produces a weighted mean 

LI. For each ROI, 20 thresholds levels were defined by equal steps from 0 to the 
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maximum t-value. Hundred bootstrap resamples (sample ratio k = .25) were taken in all 

ROIs in LH and RH. Only the central 50% of those 10 000 possible were preserved to 

avoid statistical outliers. A weighted overall mean LI was calculated on the basis of the 

remaining data by assigning a higher weight to the higher thresholds. More details can 

be found in Wilke and Schmithorst (2006). Final LI values ranged from -1 (only active 

voxels in RH) to +1 (only active voxels in LH). Participants with LI > 0.5 were 

considered as left dominant, those with LI < -0.5 were defined as right dominant.  

 

 

 

Results 

 

Behavioral Results 

 

No participant reported any difficulty in completing the word generation task. In 

the LDT, participants made on average 2.9% errors, proving that everyone found the 

task easy to perform. Overall mean RT was 601 ms, with no significant difference in 

latencies between the word and nonword stimuli [F < 1]. The fMRI analysis was based 

on all correct trials. Behavioral LDT data of five LH speech dominants (participants 32, 

33, 35, 40 and 50 in Table 1) failed to be recorded. We decided to leave these 

participants in the sample, given the high overall performance.   

 

fMRI Results 

 

Figure 1 shows the lateralization patterns of all subjects for IFG activity (Broca's 

area: pars opercularis + pars triangularis) during silent word generation and vOT 

activity during LDT. Individual LI values, calculated by the LI toolbox of Wilke and 

Lidzba (2007), can be seen in Table 1. Finally, Table 2 gives an overview of 

percentages of LH/RH or bilateral dominance based on the LIs for IFG/word generation 

and vOT/LDT word reading. 
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Subject Handedness Word generation Lexical decision 
 
    IFG LI vOT LI LH vOT peak (x,y,z) Z-score RH vOT peak (x,y,z) Z-score 
1 -3,0 -0,94 No sig. activation     
2 -2,0 -0,93 0,09     
3 -1,7 -0,93 -0,51     
4 -2,2 -0,93 -0,39     
5 -3,0 -0,92 -0,14   (46,-52,-24) 4,64 
6 -1,4 -0,92 0,06 (-46,-56,-24) 3,21   
7 -2,6 -0,92 -0,74   (35,-52,-21) 4,29 
8 -2,8 -0,91 0,25 (-35,-70,-14) 4,38 (46,-63,-18) 4,1 
9 -3,0 -0,89 -0,23     

10 -3,0 -0,87 0,11 (-35,-46,-21);(-42,-63,-10) 5.12;3.86 (49,-63,-10) 3,65 
11 -2,9 -0,84 -0,49     
12 -3,0 -0,80 -0,78   (52,-63,-10) 4,09 
13 -2,1 -0,80 -0,47   (42,-52,-14) 3,33 
14 -3,0 -0,78 -0,73   (49,-70,-10) 3,75 
15 -0,5 -0,76 -0,53   (38,-70,-18) 3,78 
16 -1,9 -0,75 -0,10 (-32,-56,-21) 4,08 (52,60,-10) 3,63 
17 -2,5 -0,71 -0,41 (-35,-49,-18) 4,61 (42,-70,-18) 4,61 
18 -2,9 -0,69 0,60 (-42,-49,-21) 5,11   
19 -0,5 -0,64 -0,35     
20 -2,8 -0,62 0,23     
21 -1,9 -0,50 0,60 (-49,-70,-14) 3,69   

22 -2,4 -0,48 0,44 (-49,-66,-10) 5,68 (52,-66,-10);(46,-52,-10) 
4.15; 
3.68 

23 -1,5 -0,47 -0,18     
24 -2,5 -0,47 0,08 (-35,-49,-21) 3,46 (52,-60,-14) 3,36 
25 -2,6 -0,43 -0,66   (38,-46,-21) 3,69  
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26 -1,8 0,29 -0,44   (52,-52,-14) 3,14 
27 1,6 0,29 0,40     
28 -3,0 0,51 0,33 (-38,-49,-16) 3,82 (38,-52,-10) 3,65 
29 -2,7 0,52 0,52 (-42,-63,-18) 4,01   
30 -2,6 0,58 0,19     
31 -2,9 0,62 0,02 (-38,-49,-18) 3,56 (38,-52,-14) 3,69 
32 -1,1 0,64 0,89 (-49,-52,-10) 3,82   
33 -3,0 0,65 0,75 (-52,-60,-14) 4,09   
34 -2,7 0,66 -0,29   (38,-49,-18) 3,83 
35 -3,0 0,68 0,37 (-42,-66,-21)  3,66   
36 -3,0 0,69 0,84 (-38,-66,-18) 3,57   
37 -2,4 0,73 -0,04 (-46,-52,-24) 4,43 (46,-70,-10) 3,69 
38 -2,8 0,75 -0,29     
39 -1,8 0,76 -0,49     
40 -2,6 0,76 0,73 (-32,-52,-21) 3   
41 -2,3 0,77 No sig. activation     
42 -2,1 0,77 0,83     
43 0,5 0,78 0,43 (-38,-49,-21) 4,01   
44 0,6 0,78 0,58 (-38,-49,-18) 3,53   
45 -2,6 0,78 0,88 (-42,-66,-10) 3,68   
46 -2,2 0,80 0,72 (-46,-63,-18) 4,13   
47 -2,0 0,81 0,02     
48 -2,8 0,82 0,79 (-46,-52,-21) 3,14   
49 -2,9 0,82 0,60     
50 -2,2 0,83 0,52 (-38,-52,-24) 3,76   
51 -2,4 0,86 0,58 (-38,-52,-24) 5,24   
52 -2,9 0,88 0,72     
53 -0,9 0,88 0,37 (-42,-66,-14) 3,06   
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54 -2,9 0,90 0,53 (-38,-70,-14) 3,1   
55 -1,5 0,91 0,41     
56 -3,0 0,92 0,78 (-38,-66,-14) 4,33   
57 -2,8 0,94 -0,42   (49,-66,-18) 4,6  

 
 
TABLE 1. 
Individual handedness scores (mean preference score between -3 and +3), LIs in inferior frontal gyrus during silent word generation (target letter vs. baba repetition) 

and LIs, left and right hemispheric peak coordinates and Z-scores in vOT during LDT (horizontal words vs. checkerboards). Note that subjects are sorted with 

ascending LI values in inferior frontal gyrus in the interest of readability of the table (i.e., from most RH dominant to most LH dominant). vOT peaks of subjects 

showing strong activity in vOT (Z > 3.7) after small volume correction are highlighted in bold, those with Z scores between 3.0 and 3.7 are written in normal font. 

Subjects without reported vOT peaks had Z-scores below 3.0. 
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   IFG (word generation)  vOT (LDT) 
RH dominant  35,1  10,9 
LH dominant  52,6  32,7 
Bilateral  12,3  56,4 

 

TABLE 2. 
Percentages of participants showing right hemispheric (RH), left hemispheric (LH) or bilateral dominance 

for the word generation task (i.e., activation in the inferior frontal gyrus, IFG) and lexical decision task 

(LDT; i.e. activation in the ventral occipito-temporal region, vOT). Percentages of IFG are based on all 

57 participants; percentages of vOT are based on 55 participants, because 2 participants showed 

unreliably low activity in this task.   
 

For the word generation task, group analyses for the participants with LH 

dominance showed strong activity in the left inferior/middle frontal gyrus (with a peak 

in the pars opercularis) extending to the cingulate gyrus, the precentral gyrus and the 

SMA, the left angular gyrus, bilateral putamen and thalamus, bilateral precuneus, and 

the right cerebellum. A reversed pattern was observed for the RH dominant participants. 

No regions other than the IFG ROI showed robust activity for all individuals (at p < .05, 

FWE corrected). At the individual analysis level, 30 participants showed a clear left 

lateralized activation pattern in IFG (i.e. with LIs score above + 0.50 in the combined 

activity of pars opercularis and triangularis; 21 females and 9 males) with values 

ranging from 0.51 to 0.94, 20 participants showed a clear right lateralized pattern (LI < -

0.50; 16 females and 4 males) with values ranging from -0.62 to -0.94, and 7 

participants can be considered as more or less bilateral for speech (LIs between -0.50 

and +0.50; 4 females and 3 males) with LIs between -0.50 and 0.29.  

 

  For the LDT, both RH and LH speech dominant groups showed right lateralized 

activity in the postcentral and precentral gyri, and in the left cerebellum, which 

corresponds to the left finger tapping for words. The activation further extended to the 

right thalamus and the putamen. For the group of participants with typical LH speech 

dominance, we also observed left-lateralized vOT activity at the same threshold (p < 

0.001 uncorrected, k=10). No vOT activity was observed for the group of atypical RH 
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participants at the same threshold (p < 0.001) but a right vOT activity was observed at a 

slightly lower threshold (p < 0.005; peak at 46, -60, -21, t=3.81). At an individual level, 

two participants (one RH and one LH dominant) were excluded from further analyses 

because they showed no significant activation at an uncorrected p < .01 level in the 

predefined vOT box. Among the remaining participants, 18 showed clear LH reading 

laterality with vOT LI values higher than +0.50, ranging from 0.52 to 0.89. Sixteen of 

them were also clearly left lateralized for speech. Subject 18 had a clear crossed 

lateralization pattern as her IFG LI was -0.69 and her vOT LI +0.60. Subject 21 had an 

IFG LI of -0.50 combined with a vOT LI of +0.60. Only six participants were clearly 

RH lateralized in vOT with LIs ranging from -0.78 to -0.51. Among them, five were 

also clearly RH lateralized in IFG and one showed bilateral speech activity with an IFG 

LI of -0.43.  

 

Next, a correlational analysis based on the individually calculated LIs was 

performed. The overall correlation between IFG LIs in word generation and vOT LIs in 

LDT (N = 55) was strongly significant in the positive direction (r = .59; p < .001), 

indicating that both regions colateralized. 

 

At the same time, Figure 1 illustrates that the laterality pattern was much less 

clear for vOT than for IFG. The majority of the participants (N = 31) had bilateral vOT 

activity with LIs between -0.49 and +0.44. For the participants with a positive LI values 

for both tasks, the mean IFG LI was 0.73 (N = 31) and mean vOT LI was +0.48 (N = 

34). For participants with negative values, the means were -0.75 for IFG (N = 24) and -

0.41 for vOT (N = 21). About half of these participants were LH dominant for speech, 

the other half was RH dominant. In particular the participants with RH dominant IFG 

seemed to be less lateralized in vOT. Here we also saw the two clearest cases of crossed 

lateralization (the abovementioned Subjects 18 and 21). Subject 39 can be considered as 

a third participant with crossed laterality, with an IFG LI of +0.76 and a vOT LI of –

0.49. This means that 3/55 or only 6% of all participants showed a clearly crossed 

lateralization pattern. 
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 To further investigate the individual vOT activity pattern, we checked the 

strength of the vOT activity during the LDT for each participant within the pre-defined 

bilateral region of interest. A small volume correction was applied (Worsley et al., 

1996). The threshold p < 0.05 after correction for number of independent comparisons 

within the pre-defined region corresponded to a voxel threshold of Z > 3.7. All peaks of 

vOT activation surviving this threshold are reported in Table 1. We also report peaks of 

Z > 3.0 as trends. It can be noticed that for 17/55 or 29.8% of the participants, no 

significant vOT activity could be reported.  

 

Discussion 

 

In this study, we further explored the colateralization between 1) speech production as 

assessed by the activity in IFG (Broca's area: pars opercularis and pars triangularis) 

measured in a silent word generation task and 2) word reading as defined by the activity 

in the vOT region during a LDT with horizontally presented words. Previous small-

scale studies such as Cai et al. (2008, 2010) located both functions in the same 

hemisphere for 26 out of 28 participants in total. This seems to be in line with the 

scarcity of single case studies reporting crossed lateralities in both healthy participants 

and patients (Baciu et al., 2003; Jansen et al., 2006; Kamada et al., 2006; Lee et al., 

2008). The use of a global language LI was also criticized by Seghier, Kherif et al. 

(2011), because they found large inter-subject variabilities of lateralization across 

language-related brain regions.  

By testing a large sample of left-handers we explored the degree of frontal-

temporal lateralization variability in healthy participants. Similar to Cai et al. (2008, 

2010), the vast majority of participants showed most vOT activation in the same 

hemisphere as the one with the most activity in IFG, leading to a positive correlation of 

0.59 between both LIs. As a matter of fact, only 3/55 participants (6%) showed clear 

evidence for a cross-lateralization if laterality was defined as a LI index of +0.50 or –

0.50. With a slightly lower criterion, two more participants would qualify.  

 

We can assume that the number of crossed lateralizations would be even smaller 

among right-handers. Genetic models of left- handedness attribute hand preference in 
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these individuals to a chance factor. For instance, the model of McManus (1985) 

focuses on the relationship between handedness and cerebral dominance.  In particular, 

it tries to explain why the correlation between hand preference and language dominance 

is much higher among right-handers (less than 5% crossed laterality: right-hand 

preference and RH language dominance) than among left-handers (more than 70% 

crossed laterality: left-hand preference and LH language dominance). McManus's 

(1985) theory claims that handedness is determined by a gene with two alleles. A 

homozygous gene with two D (Dextral) alleles always leads to right-handedness and 

left hemisphere dominance, a homozygous gene with two C (Chance) alleles produces 

random preferences (both for handedness and language laterality), and a heterozygous 

DC type leads to a pattern in-between. Because left-handers always possess at least one 

C-allele, they are expected to show much more variability in language dominance and, 

arguably, in the lateralization of other brain areas as well. Only the right-handers with 

one or two C-alleles are expected to show crossed lateralities. The frequency of the C-

allele is estimated to be around .15, so that only a small percentage of right-handers is 

expected to have crossed laterality.  As a result, left-handers may be more prone to 

crossed laterality of speech production and visual word recognition, although this 

explanation is still speculative at present and only one of several potentially genetic 

influences. In line with these predictions, Cai et al. (2010) reported more variability in 

their atypical (left-handed) participants than in their typical (predominantly right-

handed) participants. 

 

The high correlation between IFG and vOT lateralizations in our study was 

accompanied by a higher percentage of bilateral language representation in vOT than in 

IFG. The evidence for stronger asymmetry in IFG than vOT agrees with the hypothesis 

that speech production is the most lateralized function (Kosslyn, 1987), because the 

rapid coordination of movements involved in speech require a single control center. 

There may be more scope for bilateral representation in the word reading system. This 

by itself could be the reason for the low incidence of crossed laterality, as persons with 

inverse lateralities of vOT and IFG might be more liable to involve the contralateral 

vOT tissue in order to optimize the interactions with IFG. 
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 Another interesting finding of the current study is that there was a tendency 

towards more LH vOT involvement in participants with RH dominant IFG than there 

was RH vOT activation in participants with a LH-asymmetry for IFG. The higher 

incidence of finding opposite LI values for vOT and IFG in RH speech dominants was 

also observed by Cai et al. (2010), who mentioned a possible explanation for this. 

Reversed functional asymmetries are not always associated with deviations at the 

anatomical level (Sun & Walsh, 2006). In addition, given that the anatomic 

frontotemporal connections seem to be stronger in LH than in RH (Glasser & Rilling, 

2008; Powell et al., 2006), this could imply that some right IFG dominant participants 

have less developed connections between their RH IFG and RH vOT cortex, even 

though their speech production is atypical at the functional level. This suggestion of 

course is a general observation and needs future research by for example Diffusion 

Tensor Imaging techniques in the same group of participants. 

 

 Reading direction could be a second factor in the shift towards a stronger LH 

vOT involvement in RH dominant participants. As all participants were native Dutch 

speakers, they all read from left to right. It is well known that readers have an 

asymmetric perceptual span in line with their reading direction. For left to right readers 

the span is estimated to go from about three to four letters at the left side to about 14-15 

letters at the right side (Rayner, 1998). This means that more information is extracted 

from the right visual field than the left visual field, putting the left vOT in the lead. 

Interestingly, the reading direction did not result in a massive shift of vOT asymmetry 

to LH dominance, suggesting that the impact of the reading direction on vOT 

asymmetry is rather limited. 

 

The observed data agree with Pinel and Dehaene (2010) in showing that the 

interhemispheric interactions do not seem to preclude a rather large variety of LI indices 

in different brain regions. It is not the case that strong laterality in one region is 

indicative of similar strong laterality in another region, even not when both regions are 

assumed to interact intensely. In other words, the degree of lateralization of two 

language functions is not as consistent as the direction of these lateralities. This has 

implications for preoperative examinations in patients. Seghier, Kherif et al. (2011) 
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already argued for measuring regional instead of global LIs when they found a 

combination of strongly left lateralized activity in angular gyrus with relatively low 

lateralized activity in the ventral precentral gyrus in their 82 subjects (44 right-handers, 

38 left-handers) performing a semantic word matching task. Similarly, Tzourio-

Mazoyer, Josse, Crivello and Mazoyer (2004) found LH/LH, LH/RH and RH/RH 

patterns during a PET study of a word generation (IFG) and story listening (middle and 

inferior temporal regions) task. The independence of LIs in various regions is likely to 

be clearer the more different the functions are.  

 

At present, our conclusions are limited to the colateralization of speech 

production in IFG with LDT word reading in vOT. The language network obviously 

goes far beyond these two regions and the many-to-many mapping of brain structures 

and functions makes the colateralization analysis incomplete. For example, the superior 

temporal sulcus (STS) is another important node in the lateralized language network. 

Richardson, Seghier, Leff, Thomas and Price (2011) investigated different possible 

pathways including the posterior inferior occipital region, vOT and anterior/posterior 

STS by means of dynamic causal modeling. They concluded that different routes can be 

followed between these regions to link orthographic, phonological and semantic 

processing, which illustrates that linking two language areas is only part of the complex 

language network. Similarly, Pinel and Dehaene found weak correlations between the 

LIs of the fusiform gyrus and frontal regions, but observed strong colateralizations 

between the posterior STS and fusiform/frontal areas. They discussed that the STS may 

be a keystone in the language network, because previous studies demonstrated an early 

leftward temporal lateralization for speech listening that can already develop after two 

or three months (Dehaene-Lambertz, Dehaene & Hertz-Pannier, 2002). Only nine 

participants showed superior temporal activity in our sample (at an uncorrected p < 0.01 

level with Z > 3, defined as a sphere ROI of 15 voxels around x = -53, y = -13, z = 0; see 

Jobard, Crivello & Tzourio-Mazoyer, 2003), but this could be attributed to an overall 

high activity level around the STS, so that no conclusions about STS can be made in our 

sample with this LDT. Jobard et al. (2003) argued that superior temporal activity is part 

of a network converting graphemes into phonemes when reading words or 
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pseudowords. The decision between words and nonwords in our LDT presumably did 

not require phonological computations. 

 

Future research is needed to complete the currently presented colateralization 

results between vOT and IFG with LIs of for example the STS. It would then be 

possible to see how different subareas of the language network are linked to each other 

in terms of lateralization. Moreover, additional LI values of other regions are needed 

because the vOT is not purely dedicated to LDT word reading (Dehaene et al., 2004; 

Price & Devlin, 2003, 2011), and the IFG is activated in more tasks than word 

generation as well (Hagoort, 2009; Lindenberg, Fangerau & Seitz, 2007). Other tasks 

will also create the possibility to perform other analyses than correlational analyses. For 

example, a dynamic causal modeling analysis allows to test which connections between 

different regions fit best with the acquired activation maps (Friston, Harrison & Penny, 

2003). This could not be applied to the current data, because the IFG and vOT ROIs 

were defined in two different tasks (word generation vs. LDT respectively) and because 

there was too much variability in ROI activation at the individual level. In addition, 

functional and anatomical connectivity analyses could explore whether the different 

patterns of asymmetry can be associated with differences in connection strength. 

Finally, future research can investigate whether opposite asymmetries have 

processing consequences. Would participants with deviating LIs in IFG and vOT rely 

less on phonology in visual word processing than participants with similar LIs? There is 

a large range of tasks that can be used to address these questions (e.g., Rastle & 

Brysbaert, 2006).  
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